measuring-rods, any more than in the case of the disc-shadows on _E_, because the standards of measurement behave in the same way as the spheres. Space is homogeneous, that is to say, the same spherical configurations are possible in the environment of all points.* Our space is finite, because, in consequence of the "growth" of the spheres, only a finite number of them can find room in space. * This is intelligible without calculation--but only for the two-dimensional case--if we revert once more to the case of the disc on the surface of the sphere. In this way, by using as stepping-stones the practice in thinking and visualisation which Euclidean geometry gives us, we have acquired a mental picture of spherical geometry. We may without difficulty impart more depth and vigour to these ideas by carrying out special imaginary constructions. Nor would it be difficult to represent the
Page annotations:
Add a page annotation: