Let us imagine a point _S_ of our space, and a great number of small spheres, _L'_, which can all be brought to coincide with one another. But these spheres are not to be rigid in the sense of Euclidean geometry; their radius is to increase (in the sense of Euclidean geometry) when they are moved away from _S_ towards infinity, and this increase is to take place in exact accordance with the same law as applies to the increase of the radii of the disc-shadows _L'_ on the plane. After having gained a vivid mental image of the geometrical behaviour of our _L'_ spheres, let us assume that in our space there are no rigid bodies at all in the sense of Euclidean geometry, but only bodies having the behaviour of our _L'_ spheres. Then we shall have a vivid representation of three-dimensional spherical space, or, rather of three-dimensional spherical geometry. Here our spheres must be called "rigid" spheres. Their increase in size as they depart from _S_ is not to be detected by measuring with
Page annotations:
Add a page annotation: