surface. For to each original figure on _K_ there is a corresponding shadow figure on _E_. If two discs on _K_ are touching, their shadows on _E_ also touch. The shadow-geometry on the plane agrees with the the disc-geometry on the sphere. If we call the disc-shadows rigid figures, then spherical geometry holds good on the plane _E_ with respect to these rigid figures. Moreover, the plane is finite with respect to the disc-shadows, since only a finite number of the shadows can find room on the plane. At this point somebody will say, "That is nonsense. The disc-shadows are _not_ rigid figures. We have only to move a two-foot rule about on the plane _E_ to convince ourselves that the shadows constantly increase in size as they move away from _S_ on the plane towards infinity." But what if the two-foot rule were to behave on the plane _E_ in the same way as the disc-shadows _L'_? It would then be impossible to show that the shadows increase in size as they move away from _S_; such an assertion would then no longer have
Page annotations:
Add a page annotation: